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Abstract. We discuss a new cluster representation for the internal energy and the specific heat of
thed-dimensional Ising model, obtained by studying the percolation mapping of an Ising model
with an arbitrary set of antiferromagnetic links. Such a representation relates the thermal operators
to the topological properties of the Fortuin–Kasteleyn (FK) clusters of Ising percolation and is a
powerful tool to get new exact relations on the topological structure of FK clusters of the Ising
model defined on an arbitrary graph.

1. Introduction

It is well known that the Ising model can be mapped into a percolation problem [1, 2].
In its original formulation this mapping is based on the identification of the mean value
of the magnetization of the Ising model with the size of a (suitably defined) percolating
cluster. Such identification is highly non-trivial and allows for a geometric characterization
of several statistical observables near the critical point, a fact which has greatly improved our
understanding of the Ising model and inspired new powerful algorithms [3, 4] to simulate
the model. This mapping can also be extended to the thermal sector of the model, and
cluster representations of, for instance, the internal energy and the specific heat can be easily
constructed. However, in contrast to the case of magnetization, these representations are rather
trivial and do not add any new geometrical or topological information to the model.

In this paper we shall discuss a new cluster representation for the thermal sector of the
Ising model. To this end we shall first need to extend the percolation mapping to the case of
the Ising model frustrated by some antiferromagnetic links [5] and then we use this mapping
to extract a useful piece of information on the structure of the Fortuin–Kasteleyn (FK) clusters
of the unfrustrated model.

The main feature of our new representation is that it relates the thermal operators of the
model (in particular, the internal energy and the specific heat) to the topological properties of
the clusters of a typical configuration of Ising percolation. As a consequence, one can write
exact relations on the topological structure of the FK cluster.

The simplest of these new relations deals with the concept of non-cutting orblack bond.
A bond of a FK cluster is said to be black if its cancellation does not split the cluster in two
disjoint parts. We shall prove (see section 6) that in the Ising model defined on an arbitrary

0305-4470/00/122333+12$30.00 © 2000 IOP Publishing Ltd 2333



2334 M Caselle and F Gliozzi

d-dimensional lattice withN links at the couplingβ, the mean number〈NB〉 of black bonds
is related to the internal energyE by

E = 〈NB〉 1

sinh 2β
+N tanhβ. (1)

Combining this with the well known expression (see equation (9))

E = 〈NG〉 eβ

sinhβ
−N (2)

where〈NG〉 is the mean number of bonds of FK graphs associated to the configurations of
Ising percolation, yields a simple, exact relation between〈NB〉 and〈NG〉. Similar relations
can be found for the specific heat.

In fact, these new relations are true for the Ising model defined on any arbitrary graph;
however, in extracting our results we shall always assume for simplicity that the model is
defined on a regular lattice ind = 2, 3, . . . dimensions with periodic boundary conditions
boundary conditions (BCs).

In the process of constructing our new representation we shall discuss two issues which
are rather interesting in themselves.

First, we shall construct a scheme to classify the bonds of a cluster on the basis of their
topological properties (see section 3). The standard classification [6], which splits the bonds
in three classes (which are commonly denoted with the three colours red, blue and green),
refers to the bonds of the (infinite) percolating cluster. Our new representation of thermal
operators suggests a slightly different bond partition, based on the connection properties of
all the clusters. Within our classification scheme the topological properties of the bonds are
unambiguously identified by the class to which they belong.

Second, we shall show in section 4.1, using duality, that in the Ising model all the correlators
of an even number of spins (and hence invariant under theZ2 symmetry of the model) can be
expressed as ratios of partition functions with a suitable set of antiferromagnetic links.

This paper is organized as follows. The first part of the paper is composed of an
introductory section on the Ising model and the percolation map (section 2) which will allow
us to fix notation and to make the paper as self-contained as possible. In section 3 we discuss
the topological properties of the clusters. In section 4 we deal with the Ising model in the
presence of antiferromagnetic links and duality transformation, and section 5 is devoted to the
extension of the percolation mapping to the frustrated Ising model. In these last two sections
we have collected most of our new results which are then used in section 6 to construct new
cluster representations for the internal energy and specific heat. Finally, section 7 is devoted
to some concluding remarks.

2. Ising model

Thed-dimensional Ising model is defined by the Hamiltonian

H(J, h′) = −J
∑
〈n,m〉

snsm + h′
∑
n

sn (3)

where the field variablesn takes the values−1 and +1;n labels the sites of the lattice (denoted
by3 in the following) which we assume to be ad-dimensional simple (hyper)cubic lattice of
sizeLwith periodic boundary conditions; however, a large part of our considerations are valid
for an Ising model defined on an arbitrary graph. The notation〈n,m〉 indicates that the sum is
taken on nearest neighbour sites only. The partition function is defined as usual by

Z =
∑
sn=±1

e−β H(J,h
′) (4)
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whereβ ≡ 1
kT

. Plugging equation (3) in the definition ofZ and assuming the usual conventions,
J = 1 andh = βh′, we obtain

Z(β, h) =
∑
sn=±1

eβ
∑
〈n,m〉 snsm+h

∑
n sn . (5)

For h = 0 andd > 2 the phase diagram of the model is composed of two phases separated
by a second-order phase transition located atβc ≡ 1

kTc
. In the high-temperature phase the

Z2 symmetry of the model is preserved and the magnetization is zero; in the low-temperature
phase theZ2 symmetry is spontaneously broken and the magnetization becomes different from
zero.

2.1. Mapping to a percolation model

In this section we shall discuss the mapping in the caseh = 0. The extension to a nonzero
magnetic field is straightforward and can be found, for instance, in [7].

The Ising partition function of equation (5) withh = 0 can be rewritten as

Z(β) = eNβ
∑
si=±1

∏
〈ij〉

[e−2β + (1− e−2β)δ(si, sj )] (6)

whereN ≡ dLd is the number of links in the lattice and theδ function takes the value
δ(si, sj ) = 1 when the two arguments coincide and zero otherwise. Expanding the products
in equation (6) one finds

Z(β) = eNβ
∑
G

∑
si=±1

[ ∏
〈ij〉∈G

pδ(si, sj )

]
(1− p)N−N(G) (7)

wherep = 1− e−2β ,G denotes an arbitrary subgraph of the lattice andN(G) is the number
of links ofG. In general,G will be composed of several connected components (FK clusters
in the following). Let us callC(G) the number of clusters in the graphG. Note that among
the clusters one has to also consider those with one site only.

Summing on the spin configurations in equation (7) we end up with

Z(β) = eNβ
∑
G

pN(G)(1− p)N−N(G)2C(G) (8)

which can be interpreted as the partition function of a percolation model with bond probability
p and with a weight 2 for each independent cluster. In this framework the magnetization
transition of the Ising model becomes a percolation transition, located at the percolation
thresholdpc ≡ 1− e−2βc .

Forp > pc an infinite, percolating cluster exists. The density of sites belonging to this
percolating cluster, which is zero belowpc, can be used as order parameter for the percolation
transition. It can be shown that it exactly coincides with the magnetization density of the
original Ising model.

The internal energy in the percolation framework can be constructed by taking the
logarithmic derivative of equation (8) with respect toβ. The result is

E = 2〈N(G)〉
p

−N (9)

where the mean value is taken with respect to the measure of equation (8). It is interesting to
compare this result with the standard definition of internal energy:

E = ∂

∂β
logZ(β, h = 0) =

〈 ∑
〈n,m〉

snsm

〉
. (10)
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If we denote the number of links which join spins with the same sign in a given configuration
by N+ and the number of those which join spins with opposite sign byN− ≡ N − N+ then
equation (10) can be rewritten as

E = 〈N+〉 − 〈N−〉 = 2〈N+〉 −N. (11)

By comparing equations (9) and (11) we see that

p〈N+〉 = 〈N(G)〉 (12)

which is the most intuitive way to define Ising percolation (and inspired Swendsen and Wang in
their proposal [3]): given a generic configuration of the Ising model, delete all the bonds which
join spins with opposite sign and, on the remaining graph, construct a standard percolation
process, i.e. switch on the bonds at random with probabilityp. The resulting graphG will be
a typical configuration of an Ising percolation model.

3. Cluster structure

As we have seen, an interesting feature of the percolation mapping is that it allows a geometric
characterization of various thermodynamic quantities. In order to better understand this
geometric setting it is convenient to study in a more precise and detailed way the cluster
structure in a typical percolation configuration.

An important step in this direction was made by Stanley in 1977 [8] who noted that, at
p = pc, in a generic percolating cluster we can distinguish three different sets of bonds. By
associating an electric unit resistance to each bond, and applying a voltage between the ends
of the cluster, one can select the ‘dangling bonds’ (also calledgreenbonds) which are those
which do not carry current. The remaining bonds form thebackbone; in this set one can then
select the singly connected bonds (red bonds), which carry the whole current and have the
property that if one is cut then the cluster breaks into two parts. The remaining bonds are
multiply connected and are usually denoted asbluebonds. Starting from this coarse-grained
classification, one can then look at more subtle structures, selecting, for instance, pairs of
double connected bonds, triples. . . . Equivalently, one can look to the subsets of bonds which
carry exactly half of the whole current, one-third, and so on.

With respect to this standard classification, which assumes free BCs, in this paper we
prefer to deal with periodic BCs. This is because, as we shall see, the new representation of the
thermal operators does not depend explicitly on the percolating property of the configurations,
but rather on their winding and connection properties. We are then forced to introduce a
different partition of the bonds which slightly differs from that of Stanley and applies not
only to the (infinite) cluster wrapped along one or more directions, but also to any FK cluster
contributing to the partition function.

We suggest that the reader follow our definitions looking at figure 1, where the bonds of a
percolating cluster are split into three sets according to the Stanley classification (figure 1(a))
and ours (figure 1(b)).

G denotes the generic graph which appears in the sum of equation (8). It is composed of
disconnected FK clusters. We callG1 the set of those bonds which, when deleted, disconnect
the cluster to which they belong into two disjoint clusters. Recall that we also consider as a
cluster that composed of only one site and no bonds. We call the bonds ofG1 greyor cutting
bonds.

Let us callG0 the complement ofG1 in G, i.e.G = G0 ∪G1. G0 contains two kinds of
bonds: those which, if deleted, do not change the wrapping properties ofG are calledblack
bonds; those which transform a wrapped graph into an unwrapped one are calledred bonds.
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(a) (b)

Figure 1. (a) Stanley classification of the bonds of a percolating cluster. The thin lines denote
the dangling bonds, the thick lines the backbone and the dashed lines the red bonds. Free BCs are
understood. (b) The same graph of figure 1(a) in the topological classification described in the
text. Thin lines are the grey bonds, thick lines the black bonds and the dashed lines the red bonds.
Periodic BCs are understood.

It is clear that our grey bonds form a subset of the dangling bonds of Stanley classification,
but there are dangling bonds that are black in our classification, as comparison of figures 1(a)
and (b) shows.

Using an electric circuit analogy again, one can say that our black and red bonds are those
which carry current in the presence of a variable magnetic field pointing in a generic direction†.

It is known that the winding properties of the FK clusters are related to the interface tension
in the low-temperature phase [10]. In this paper we shall see that the black bonds are directly
involved in a new representation of the internal energy.

Our classification can be easily iterated by identifying other topological subsets ofG0

associated to other thermal observables. In particular, we need to define another set, denoted
byH2, that will play a major role in discussing the new representation of the specific heat.H2 is
the set of ‘cutting pairs’ ofG0, i.e. the set of those pairs of black bonds which, if simultaneously
deleted, disconnect the cluster to which they belong into two separate clusters‡.

Let us examine a specific construction of the setH2, which is interesting both because it
sheds light on the structure ofH2 and because it can be straightforwardly iterated to construct
‘cutting triplets’ and from them possibly further higher combinations which contribute to
higher derivatives of the free energy (in this paper, however, we shall not study these more
complicated cases):

• Choose a linkl ∈ G0 and construct the graphG0(l) obtained fromG0 by deleting the link
l.
• Select inG0(l) the cutting bonds (as we did above when we constructedG1 starting from
G), which form a setG1(l).
• Repeat the operation for alll ∈ G0. The set of pairs{(l, h),∀h ∈ G1(l), ∀l ∈ G0} is

exactly twiceH2 (due to the fact that each pair appears two times). This means that (apart

† We thank Lev Shchur for this observation.
‡ Note that, since by definitionG0 does not contain cutting bonds, at least two bonds are needed to disconnect a
cluster.
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from a factor two)H2 coincides with the collection of graphsG1(l).

4. Ising model with a set of antiferromagnetic links

A natural extension of the Ising model discussed in section 2 is the one in which we allow the
couplingJ to change sign from link to link. Those links for whichJ = −1 are said to be
antiferromagnetic or flipped links. In analogy with the definitions of section 2 (and setting for
simplicity h = 0) we have now

H(J ) = −
∑
〈n,m〉

J〈n,m〉snsm (13)

from which we may construct the partition function:

Z(β, J ) =
∑
sn=±1

e−β S(J ). (14)

We denote the partition function without antiferromagnetic links and with periodic BCs by
Z(β). Denoting byF the set of flipped links we can write

Z(β, JF )

Z(β)
=
〈 ∏
〈ij〉∈F

e−2βsi sj

〉
(15)

where the mean value is taken with respect to the standard, unfrustrated Ising Hamiltonian.
It is almost evident that suitable linear combinations of these expectation values reproduce
the whole even sector of the theory. This can be simply proved using the Kramers–Wannier
duality; this transformation gives a one-to-one map between these expectation values and the
set of all correlation functions among the physical observables of the even sector of dual theory,
as described in the next section.

4.1. Duality and frustrations

The Ising model defined in section 2 is characterized by the two following features: the
dynamical variables (the spins) live on thesitesand the interaction is defined on thelinks of
the lattice3. Sites and links are respectively zero- and one-dimensional simplexes of the lattice.
We can easily generalize the Ising model by looking to different geometrical realizations of
dynamical variables and interaction Hamiltonians. For instance, in the Ising gauge model we
take the spins̃sl to live on linksl and the interaction to be defined on plaquettess̃t̄ =

∏
l∈t̄ s̃l .

We could also choose the dynamical variables on the plaquettes and the Hamiltonian to live
on cubes, thus defining a Kalb–Ramond-type theory.

It is well known that the Kramers–Wannier duality transformation can be generalized to
Ising models in any dimensiond. This transformation is not a symmetry of the model: it
maps one description of the dynamical system to another description of thesame system. This
duality transforms a given lattice3 (in our case the (hyper)cubic lattice on which the Ising
model is defined) into a new lattice (the dual lattice3̃) in which eachk-dimensional simplex
is mapped to ad − k one. In the case of (hyper)cubic lattices the dual lattice again turns out
to be (hyper)cubic.

Under this mapping the Ising model on3 is transformed into a new model whose
Hamiltonian lives on ad − 1 simplex of3̃. Thus we have the following correspondences:

if d = 2 Ising model⇐⇒ Ising model

if d = 3 Ising model⇐⇒ Z2 gauge model

if d = 4 Ising model⇐⇒ Z2 Kalb–Ramond model.
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It can be shown that in the thermodynamic limit the free energy density of the original Ising
model coincides (apart from an additive function ofβ which can be evaluated exactly) with
that of the dual model evaluated at the dual couplingβ̃ defined as

β̃ = − 1
2 log[th(β)]. (16)

Using a duality transformation it is possible to build up a one-to-one mapping between a given
patternJ = {J〈ij〉} of antiferromagnetic links and the correlators of the physical observables
of the dual description. Take, for instance, the three-dimensional case and denote byF the
set of flipped links. Associate to each of these links the corresponding plaquette of the dual
lattice and denote bỹF this set. Duality implies that†〈 ∏

〈ij〉∈F
e−2βsi sj

〉
=
〈∏
t̄∈F̃

s̃t̄

〉
gauge

(17)

where the left-hand side coincides with the ratio of the partition functions defined in
equation (15), while the right-hand side is the expectation value of the product of plaquette
variabless̃t̄ with a Boltzmann factor e−β̃Sgauge with

Sgauge= −
∑
t̄
s̃t̄ s̃t̄ = s̃l1 s̃l2 s̃l3 s̃l4 (18)

wheres̃l ∈ {1,−1} are the variables located in the links of3̃.
Conversely, given any product of Wilson loopsW(C1)W(C2) . . . , we can replace it (in

many ways) with an equivalent set of elementary plaquettes, with the only constraint that the
boundary of this set should coincide with the set of loops{C1, C2, . . .}; then we can again apply
equation (17) and this completes the proof of the above-mentioned one-to-one correspondence
in the three-dimensional case. The extension to other dimensions is straightforward.

We now want to use this correspondence to show that for the even sector of the spin
Ising model (namely for the operators obtained as products of an even number of spins and
hence invariant under theZ2 symmetry of the model) the set of ratios (15) corresponding to
all the possible choices of antiferromagnetic bonds forms a complete set in the sense that any
correlator of the spin Ising model can be expressed in terms of these ratios. To be definite
we put forward this argument for the three-dimensional case again, its generalization to other
dimensions being straightforward. The set of products of Wilson loops forms a complete set of
observables of the dual description; the simplest, non-trivial observable is the plaquette. The
spin–spin correlators on the original lattice3 can be expressed in terms of the gauge model
by flipping the set of plaquettes of3̃ intersected by a pathγ ⊂ 3 connecting the sitex to the
sitey:

〈sxsy〉 =
〈∏
t̄∈γ

e−2β̃s̃t̄

〉
gauge

. (19)

Using the obvious identity e−2β̃s̃t̄ = cosh 2β̃−sinh 2β̃s̃t̄, the right-hand side can be written
as a combination of expectation values of products of Wilson loops. Then using equation (17)
we can evaluate this correlator directly in the Ising model in terms of flipped partition functions.
Such a construction can be repeated for any other spin correlator and easily generalized to any
dimensiond. In conclusion, we can state that the whole set of spin correlators of the Ising
model in any dimension can be encoded in a suitable set of ratios of flipped partition functions.

† It is important to stress that equation (17) holds only in the thermodynamic limit, in which the BCs can be neglected.
In fact, in general the duality transformation does not preserve specific choices of the BCs. In particular, periodic BCs
are mapped by duality into a mixture of periodic and antiperiodic BCs.
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5. Percolation mapping of the frustrated model

The percolation mapping discussed in section 2.1 can also be extended to the frustrated Ising
model [5]†. The main difference with respect to the unfrustrated case is that now the topology
of the cluster is also important. Let us examine this mapping in detail.

We assume that the set of couplingsJij of equation (3) is given by an arbitrary, fixed
collection of signs±1. As in the case without frustrations the Ising partition function of
equation (14) can be rewritten as

Z(β, J ) = eNβ
∑
si=±1

∏
〈ij〉

[1− p + pδ(J〈ij〉sisj )] (20)

whereδ(J〈ij〉sisj ) ≡ (1 + J〈ij〉sisj )/2 is a projector on configurations withJ〈ij〉sisj = 1.
Expanding the products in equation (20) we find that

Z(β, J ) = eNβ
∑
G

(1− p)N−N(G)pN(G)
∑
si=±1

[ ∏
〈ij〉∈G

δ(J〈ij〉sisj )
]
. (21)

As in section 2,N is the total number of links of the lattice, the summation goes over all the
subgraphsG of the lattice,N(G) is the number of links ofG andp = 1− e−2β .

Note that the whole dependence on the signsJ〈ij〉 is contained in theδ projectors and that
the product inside the square brackets is a projector which forces all the links of each connected
componentGc of the graph to fulfil the constraint

J〈ij〉sisj = 1 〈ij〉 ∈ Gc. (22)

We say that a clusterGc is compatiblewith a given choice of couplingsJ〈ij〉 if there is a
configuration of its sites obeying such a constraint. In the standard case(J〈ij〉 = 1 ∀〈ij〉) this
condition implies simply that the sites of each cluster have the same sign. In the presence of
frustrations it is easy to verify that equation (22) is a topological constraint, telling us that a
connected graphGc is compatible if and only if no loop ofGc includes an odd number of
antiferromagnetic links.

A crucial observation is that, owing to the connected nature of the cluster, the value ofsi
of any sitei of a compatible cluster fixes the values of all the other sites of the cluster, and
that if {si, i ∈ Gc} is a solution of the constraint, the opposite configuration{−si} is also a
solution. Thus any connected subgraph contributes to the partition function with a factor of
two if it is a compatible cluster, otherwise it gives a zero contribution. Thus summing on the
spin configurations in equation (21) we end up with

Z(β, J ) = eNβ
∑
G

$J (G)p
N(G)(1− p)N−N(G)2C(G) (23)

where$J denotes the projector on compatible graphs, i.e. graphs made with compatible
clusters, defined as follows:

$J (G) =


1 if no loop ofG contains an odd

number of antiferromagnetic links,

0 otherwise.

(24)

In the standard, unfrustrated case the sum overG is unconstrained and we obtain the result
discussed in section 2.1. When there are frustrations, the set of compatible graphs is a proper

† See also [9] for some recent application of the percolation mapping in the presence of frustrations to the study of
disordered systems.
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subset of the all the possible subgraphs of the lattice. We can then write the following exact
relation, which is the cluster version of the equation (15):

Z(β, J )

Z(β)
= 〈$J 〉 (25)

where the expectation value is taken with respect to the standard Hamiltonian.
An interesting, particular example is the Ising model on a cubic lattice with periodic(p)

BCs in one coordinate direction, sayz, in which all the links of a slice orthogonal toz are flipped
to −1. Such a pattern of antiferromagnetic couplings is equivalent to choosing antiperiodic
BCs(a) along thez direction. Denoting withZa andZp the partition functions with these two
different choices of boundary conditions, we have

Za

Zp
= 〈$z〉 (26)

where$z is a projector on the FK graphs which is 1 if there is no cluster with an odd winding
number in thez direction and 0 otherwise. Equation (26) is the starting point of a new
representation of the interface free energy first found in [10] which is particularly useful near
the critical point.

Coming back to the general formula (25), we would like to make a few comments:

• Equation (25) is valid not only for any regular lattice in any dimension, but also for the Ising
model defined on an arbitrary graph and for any choice of antiferromagnetic couplings.
• Any correlator of the even sector of the Ising model can be expressed in terms of the

ratios (25).
• The projector$J depends only on the subgraphG0 ⊂ G.

As a consequence, there is no information loss in the even sector if one deletes all the grey
bonds of any graphG, provided one uses equation (25) to evaluate these observables. In other
words, in the partition function (8) we can split the sum over all possible graphs

∑
G as the

double sum

Z(β) = eNβ
∑
G0

∑
G1(G0)

pN(G)(1− p)N−N(G)2C(G) ≡
∑
G0

e−H(G0;β) (27)

whereG = G0 ∪ G1 andG1(G0) denotes an arbitrary set of grey bonds compatible with a
fixed setG0 of black (and red) bonds.H defines a new Hamiltonian which depends only on
the configurations of the black bonds. Equation (25) tell us that, in spite of the sum over all the
possible insertions of grey bonds, exactly the same piece of information about the even sector
is encoded in the resulting HamiltonianH as in the original Ising Hamiltonian. Although
this fact will not be exploited in this paper, it clearly suggests the existence of a huge hidden
symmetry of the theory.

6. Cluster description of thermal observables

We are now in a position to study a new cluster representation of thermal observables, alternative
to the one presented at the end of section 2.1. Let us look first at the internal energy.

6.1. Internal energy

Let us consider an Ising system defined on an arbitrary lattice ind space dimensions with only
one antiferromagnetic link in the position〈ij〉. Then equation (15) can be rewritten explicitly
as

Z(β, J〈ij〉)
Z(β)

= 〈e−2βsi sj 〉 = cosh 2β − 〈sisj 〉 sinh 2β. (28)
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On the other hand, using equation (25) we get

〈sisj 〉 = cotanh2β − 〈$〈ij〉〉
sinh 2β

(29)

where$〈ij〉 is the projector on the graphs compatible with the antiferromagnetic link in the
position〈ij〉. Such graphs are of two types:

• those in which the link〈ij〉 does not appear;
• those in which the cluster which contains the bond〈ij〉 is split into two separate clusters

when it is deleted.

These two conditions tell us simply that〈ij〉does not belong to the subgraphG0 ofG. Summing
over all the possible links and taking advantage of the translational invariance of the lattice we
find that 〈 ∑

〈n,m〉
$〈nm〉

〉
= N − 〈N(G0)〉. (30)

Combining this result with equations (29) and (10) we get the sought-after representation of
the energy in terms of black bonds:

E = 〈N(G0)〉
sinh(2β)

+N tanhβ, (31)

as anticipated in the introduction. This is the first main outcome of our analysis.

6.2. Specific heat

Let us start from the following definition of the specific heat:

C =
〈( ∑
〈n,m〉

snsm

)(∑
〈k,l〉

sksl

)〉
−
〈( ∑
〈n,m〉

snsm

)〉2

. (32)

Call f = 〈nm〉 andg = 〈kl〉 the two links and separate the casef = g in the sum. We
obtain

C =
(
N − E

2

N

)
+
∑
f 6=g

[〈sf sg〉 − 〈sf 〉〈sg〉] (33)

with sf ≡ smsn andsg ≡ sksl .
In order to get the new cluster representation ofC it is sufficient to now consider a system

with two antiferromagnetic links located inf andg with the associated projector$fg. Then
we have

〈$fg〉 ≡ 〈e−2β(sf +sg)〉 = 〈(cosh 2β − sf sinh 2β)(cosh 2β − sg sinh 2β)〉. (34)

Again using equation (29) we get∑
f 6=g

[〈sf sg〉 − 〈sf 〉〈sg〉] =
∑
f 6=g

〈$fg〉 − 〈$f 〉〈$g〉
sinh2 2β

. (35)

The graphs with$fg = 1 are of two types:

• Those in which bothf andg do not belong to theG0 subgraph; when summing overf
andg these configurations give simply the contribution

∑
fg $f$g = (N−N(G0))(N−

N(G0)− 1).
• Those in which bothf andg belong toG0 but are such that any loop going throughf

contains alsog. Let us denote byGfg the projector which selects the graphs with this
special property.
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We may give a cluster representation of the specific heat if we are able to evaluate the sum∑
f 6=g Gfg. Reversing the order of summations, i.e. taking first the sum over all the pair of

links and then the sum overG implied in the expectation value we obtain∑
f 6=g
〈Gfg〉 = 2〈N(H2)〉. (36)

In fact, from the definition ofGfg, if Gfg = 1 then cutting simultaneouslyf andgwe disconnect
the cluster to which they belong into two subclusters, and conversely if two links belong toG0

and are a cutting pair then they certainly fulfil the conditionGfg = 1. The factor two is due to
the fact that in the sum the pairf, g appears twice.

Collecting together the various pieces we end up with

C =
(
N − E

2

N

)
+

2〈N(H2)〉 +
∑

f 6=g(〈$f$g〉 − 〈$f 〉〈$g〉)
sinh2(2β)

(37)

which gives the new representation of the specific heat in terms of black bonds.

7. Conclusions

In this paper we have shown how to construct a new representation of thermal operators in
Ising percolation in terms of a new set of bonds, called the black bonds, forming a subset of the
standard FK clusters. Our approach is quite general; indeed, we never needed to specify the
lattice structure. In fact, our results are also true for Ising models defined on arbitrary graphs.

Our main results are:

• We proposed a new scheme to classify the bonds of a cluster on the basis of their topological
properties. We have discussed the relations with the standard classification scheme.

• We pointed out that in the Ising model all the correlators of an even number of spins can be
expressed as ratios of partition functions with flipped links. In particular, we have applied
this result to the internal energy and the specific heat.

• We found that in the configurations of black bonds contributing to the partition function
is encoded the whole information on the even sector of the theory; in particular, that the
internal energy can be expressed in terms of the mean number of black bonds and that the
specific heat is related to their variance and to the special subsetH2 defined in section 3.

• Finally, we observed that our new representation of observables of the even sector suggests
the existence of a huge hidden symmetry of the Ising model.

Our results can be straightforwardly extended toq-state Potts models with generic values
of q [14].

The most relevant application of the present analysis is that it may help to find new
powerful algorithms to simulate the Ising model or to construct improved estimators for thermal
observables. As a matter of fact, for some special configurations of antiferromagnetic links
these algorithms already exist. In the case of a whole flipped hyperplane leading to antiperiodic
BCs this possibility was discussed for the first time by Hasenbusch in [10], who provided a
very powerful tool to evaluate the surface tension. Later, it was modified so as to evaluate in the
dual version Wilson loops [11], correlators of Polyakov loops [12] and plaquette expectation
values [13] in the gauge Ising model. We hope that the present analysis might help to further
extend the range of these applications.
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